Table E-III-1 2010 Assessment Summary | alendar | Year | 2010 | | | | | | |-----------------|--|---|---|---|---|--------------------------|-----------------| | utcome | Description | Performance Objective 1 | Performance Objective 2 | Performance Objective 3 | Performance Objective 4 | | | | atoomo | (a) Apply knowledge of math, | Proficient in Fundamental | Proficient in Theoretical and | Proficient in Basic Science | i didinando objectivo i | | | | | science, and engineering | Concepts and Skills | Practical Relationships | | | | | | #Totals/ | | 4.67 | 4.29 | 3.81 | | Instrument
Max | 4.22 | | 288 | | 4.22 | 3.35 | 3.39 | | Ave | 3.65 | | 14 | (h) Davies and October | 3.81 | 1.75 | 3.07 | la abla ta salla et elab el | Min | 3.35 | | | (b) Design and Conduct
experiments Analyze and
interpret data and information | Conducts the design of
experiments. | Operates equipment and collects data for analysis. | Compares results for
experimental measurements
to the literature and conducts
interpretation of results in
written reports. | Is able to collect global information and to use this information in evaluation and interpretation of laboratory data | Instrument | Average | | #Totals/ | | 4.17 | 4.50 | 4.00 | 3.84 | Max | 4.16 | | 224 | | 3.97 | 4.16 | 3.76 | 3.04 | Ave | 3.73 | | 17 | | 3.80 | 3.93 | 3.00 | 1.00 | Min | 3.04 | | | (c) Optimally select material
and design materials
treatment and production
processes | Understand the engineering design process | Formulate possible
engineering solutions | Master the iterative process ir
engineering design | Recognize and observe
constraints in engineering
design | Instrument | Average | | #Totals/ | | 4.27 | 5.00 | 4.34 | 4.79 | Max | 4.50 | | 148
12 | | 3.56
2.60 | 4.50
4.20 | 3.91
3.40 | 3.86
3.40 | Ave
Min | 3.96
3.56 | | | (d) Function well on teams | Responsible Participation | Interaction Skills | Assimilation and | | | 2.20 | | | | | | Receptiveness Skills | | Instrument | | | #Totals/
119 | | 4.80
4.03 | 4.40
4.04 | 4.27
3.84 | | Max
Ave | 4.04
3.97 | | 9 | | 3.40 | 3.40 | 3.40 | | Ave
Min | 3.97 | | | (e) Identify, formulate, and solve engineering problems | Identify | Formulate | Solve | | Inotri | | | #Totals/ | | 4.71 | 4.57 | 4.42 | | Instrument
Max | 4.22 | | 313 | | 4.22 | 4.17 | 3.46 | | Ave | 3.95 | | 14 | | 3.74 | 3.37 | 1.55 | | Min | 3.46 | | | (f) Know professional and
ethical responsibilities and
practices | Carries out responsibilities in
a professional and ethical
manner | Understands basic
engineering principles and
practices, in terms of
professional ethics and
behavior | | | Instrument | | | #Totals/ | | 4.40 | 4.67 | | | Max | 4.30 | | 72
7 | | 4.30
4.20 | 4.04
3.00 | | | Ave
Min | 4.17
4.04 | | | (g) Communicate effectively | The content of the written or
oral presentation is effective. | The organization of memorandum and technical | The design of slides shows
an understanding of vision | | | | | | | | reports is consistent with
styles accepted by the
person's primary professional
engineering society. | limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | Instrument | Average | | #Totals/ | | 4.76 | 4.67 | 4.20 | | Max | 4.24 | | 208 | | 4.24 | 4.04 | 3.93 | | Ave | 4.07 | | 14 | (h) Know engineering's global | 3.67 | 3.57 | 3.53 Recognizes the need to be | | Min | 3.93 | | | societal context | Has the broad education necessary to understanding impact of engineering solutions in global and societal context | Awareness of contemporary state of knowledge and relationship to engineering solutions | aware of societal issues especially those that can be engaged by engineering solutions | | lootry | Avoress | | #Totals/
84 | | 4.00
3.76 | 4.20
3.87 | 4.60
4.00 | | Instrument
Max
Ave | 4.00
3.88 | | 8 | | 3.40 | 3.42 | 3.40 | | Min | 3.76 | | | (i) Engage in life-long
learning | Ability to adapt to changing
technology. | Understanding of the need to
continually update one's skills
and knowledge. | Cognitive Level Assessment | | | | | #Totals/ | | 4.40 | 4.40 | 3.75 | | Instrument
Max | Average
4.40 | | 97 | | 4.40 | 3.68 | 3.75 | | Ave | 3.94 | | 5 | | 4.40 | 2.69 | 3.75 | | Min | 3.68 | | | (j) Know contemporary issues | Ability to identify basic
problems and contemporary
issues in engineering. | Application of knowledge of
contemporary issues to
Metallurgical Engineering | | | Instrument | Average | | #Totals/ | | 4.40 | 4.00 | | | Max | 4.16 | | 32 | | 4.16 | 4.00 | | | Ave | 4.08 | | 3 | | 3.92 | 4.00 | | | Min | 4.00 | | | (k) Use engineering
techniques, skills, and tools | Capable of using tools such
as Excel, SolidWorks,
MathCAD | Proficient in operating
equipment used in the
laboratory program such as
the MTS machine, rolling mill,
hardness tester | Understands the engineering
design method and can apply
this method in developing
solutions to engineering
problems. | | | | | _ | | | | | | Instrument | | | #Totals/
167 | | 4.85
3.98 | 4.83
4.12 | 4.20
3.70 | | Max
Ave | 4.12
3.93 | | | i e | 0.00 | 7.14 | 3.70 | 1 | Ave | 3.53 | **Table E-III-2 2011 Assessment Summary** | alendar | Year | 2011 | | | | | | |---------------------|--|--|--|--|---|-------------------|----------------------| | utcome | Description | Performance Objective 1 | Performance Objective 2 | Performance Objective 3 | Performance Objective 4 | | | | | (a) Apply knowledge of math, | Proficient in Fundamental | Proficient in Theoretical and | Proficient in Basic Science | | | | | | science, and engineering | Concepts and Skills | Practical Relationships | | | Instrument | Average | | #Totals/ | | 4.71 | 4.62 | 3.47 | | Max | 3.87 | | 281 | | 3.69 | 3.87 | 3.17 | | Ave | 3.58 | | 14 | | 2.71 | 2.83 | 2.71 | | Min | 3.17 | | | (b) Design and Conduct
experiments Analyze and
interpret data and information | Conducts the design of experiments. | Operates equipment and collects data for analysis. | Compares results for
experimental measurements
to the literature and conducts
interpretation of results in
written reports. | Is able to collect global
information and to use this
information in evaluation and
interpretation of laboratory
data | Instrument | Average | | #Totals/ | | 4.60 | 4.60 | 4.20 | 5.00 | Max | 4.35 | | 89 | | 3.78 | 4.35 | 3.32 | 3.54 | Ave | 3.75 | | 13 | | 3.00 | 4.20 | 2.75 | 2.75 | Min | 3.32 | | | (c) Optimally select material
and design materials
treatment and production
processes | Understand the engineering design process | Formulate possible
engineering solutions | Master the iterative process ir
engineering design | Recognize and observe
constraints in engineering
design | Instrument | Average | | #Totals/ | | 4.60 | 4.00 | 4.20 | 3.00 | Max | 4.01 | | 43
9 | | 4.01
3.00 | 3.50 | 3.93
3.67 | 3.00
3.00 | Ave
Min | 3.61 | | Ü | (d) Function well on teams | Responsible Participation | Interaction Skills | Assimilation and | 0.00 | | 5.00 | | | (=) | | | Receptiveness Skills | | Instrument | | | #Totals/ | | 4.60 | 5.00 | 3.00 | | Max | 3.67 | | 30
7 | | 3.63
3.00 | 3.67
3.00 | 3.00
3.00 | | Ave
Min | 3.43 | | | (e) Identify, formulate, and | Identify | Formulate | Solve | | | 5.00 | | #Totals/ | solve engineering problems | 4.20 | 4.00 | 4.82 | | Instrument
Max | Average
3.74 | | 115 | | 3.42 | 3.00 | 3.74 | | Ave | 3.38 | | 9 | | 2.33 | 2.00 | 2.93 | | Min | 3.00 | | #Totale/ | (f) Know professional and
ethical responsibilities and
practices | Carries out responsibilities in
a professional and ethical
manner | Understands basic
engineering principles and
practices, in terms of
professional ethics and
behavior | | | Instrument | | | #Totals/
28
7 | | 5.00
4.77
4.60 | 5.00
4.83
4.33 | | | Max
Ave
Min | 4.83
4.80
4.77 | | | (g) Communicate effectively | The content of the written or oral presentation is effective. | The organization of
memorandum and technical
reports is consistent with
styles accepted by the
person's primary professional
engineering society. | The design of slides shows
an understanding of vision
limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | Instrument | Average | | #Totals/ | | 4.60 | 4.20 | 5.00 | | Max | 3.49 | | 77
13 | | 3.49
2.33 | 3.32
3.00 | 3.44
2.33 | | Ave
Min | 3.42
3.32 | | 13 | (h) Know engineering's global | Has the broad education | Awareness of contemporary | Recognizes the need to be | | IVIIII | 3.32 | | | societal context | necessary to understanding
impact of engineering
solutions in global and
societal context | state of knowledge and relationship to engineering solutions | aware of societal issues especially those that can be engaged by engineering solutions | | Instrument | Average | | #Totals/ | | 4.74 | 3.80 | 1.00 | | Max | 3.73 | | 52
8 | | 3.73
1.00 | 3.31
2.33 | 1.00
1.00 | | Ave
Min | 2.68
1.00 | | 8 | (i) Engage in life-long
learning | Ability to adapt to changing technology. | Understanding of the need to continually update one's skills and knowledge. | Cognitive Level Assessment | | | | | #Totals/ | | 4.87 | 5.00 | | | Instrument
Max | Average
5.00 | | #10tais/ | | 4.57 | 5.00 | | | Ave | 4.79 | | 4 | | 4.43 | 5.00 | | | Min | 4.57 | | | (j) Know contemporary issues | Ability to identify basic
problems and contemporary
issues in engineering. | Application of knowledge of
contemporary issues to
Metallurgical Engineering | | | lasta | A | | #Totals/ | | 4.60 | 5.00 | - | | Instrument
Max | Average
4.82 | | 45 | | 4.59 | 4.82 | 1 | | Ave | 4.70 | | 4 | | 4.57 | 4.64 | | | Min | 4.59 | | | (k) Use engineering
techniques, skills, and tools | Capable of using tools such
as Excel, SolidWorks,
MathCAD | Proficient in operating
equipment used in the
laboratory program such as
the MTS machine, rolling mill,
hardness tester | Understands the engineering
design method and can apply
this method in developing
solutions to engineering
problems. | | | | | #Totals/ | | 4.60 | 4.60 | 4.60 | | Instrument
Max | Average
4.16 | | #1 otals/
99 | | 4.05 | 4.16 | 3.89 | | Ave | 4.16 | | 9 | 1 | 3.29 | 3.71 | 3.00 | | Min | 3.89 | Table E-III-3 2012 Assessment Summary | alendaı | r Year | 2012 | | | | | | |------------|--|--|--|--|---|--------------------------|-------------------------| | utcome | Description | Performance Objective 1 | Performance Objective 2 | Performance Objective 3 | Performance Objective 4 | | | | | (a) Apply knowledge of math, | Proficient in Fundamental | Proficient in Theoretical and | Proficient in Basic Science | | | | | | science, and engineering | Concepts and Skills | Practical Relationships | | | | | | #Totals/ | | 4.60 | 4.26 | 4.00 | | Instrument
Max | Average
3.59 | | 280 | | 3.47 | 3.59 | 3.24 | | Ave | 3.43 | | 14 | | 3.00 | 2.92 | 2.56 | | Min | 3.24 | | | (b) Design and Conduct
experiments Analyze and
interpret data and information | Conducts the design of
experiments. | Operates equipment and collects data for analysis. | Compares results for
experimental measurements
to the literature and conducts
interpretation of results in
written reports. | Is able to collect global
information and to use this
information in evaluation and
interpretation of laboratory
data | Instrument | Average | | #Totals/ | | 3.50 | 5.00 | 4.83 | 4.11 | Max | 4.32 | | 217 | | 3.10 | 4.32 | 4.16 | 3.23 | Ave | 3.70 | | 18 | | 2.80 | 3.50 | 3.67 | 1.67 | Min | 3.10 | | | (c) Optimally select material
and design materials
treatment and production
processes | Understand the engineering design process | Formulate possible
engineering solutions | Master the iterative process ir
engineering design | Recognize and observe
constraints in engineering
design | Instrument | Average | | #Totals/ | | 5.00 | 3.55 | 3.45 | 3.30 | Max | 3.56 | | 206
12 | | 3.56
2.60 | 3.48
3.40 | 3.37
3.25 | 2.97
2.60 | Ave
Min | 3.34
2.97 | | 14 | (d) Expetion well as to a | | | | 2.00 | WIII | 2.97 | | | (d) Function well on teams | Responsible Participation | Interaction Skills | Assimilation and
Receptiveness Skills | | Instrument | Average | | #Totals/ | | 5.00 | 5.00 | 3.50 | | Max | 4.25 | | 30 | | 3.87 | 4.25 | 3.50 | | Ave | 3.87 | | 6 | | 3.10 | 3.50 | 3.50 | | Min | 3.50 | | | (e) Identify, formulate, and solve engineering problems | Identify | Formulate | Solve | | Instrument | Average | | #Totals/ | | 3.65 | 3.50 | 4.26 | | Max | 3.47 | | 314
14 | | 2.76
1.96 | 3.00
1.89 | 3.47
3.06 | | Ave
Min | 3.08
2.76 | | #Totals/ | ethical responsibilities and practices | a professional and ethical manner | engineering principles and
practices, in terms of
professional ethics and
behavior | | | Instrument
Max | 3.53 | | 35
6 | | 3.53
3.50 | 3.50
3.00 | | | Ave
Min | 3.52
3.50 | | | (g) Communicate effectively | The content of the written or
oral presentation is effective. | engineering society. | The design of slides shows
an understanding of vision
limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | Instrument | | | #Totals/ | | 4.27 | 3.55 | 4.00 | | Max | 3.37 | | 191
13 | | 3.37
2.60 | 3.37
3.00 | 3.30
2.60 | | Ave
Min | 3.35
3.30 | | | (h) Know engineering's global | Has the broad education | Awareness of contemporary | Recognizes the need to be | | | | | | societal context | necessary to understanding
impact of engineering
solutions in global and
societal context | state of knowledge and
relationship to engineering
solutions | aware of societal issues
especially those that can be
engaged by engineering
solutions | | Instrument | Average | | #Totals/ | | 3.50 | 3.70 | 3.90 | | Max | 2.97 | | 71
8 | | 2.64
1.80 | 2.97
2.20 | 2.85
1.80 | | Ave
Min | 2.82
2.64 | | - | (i) Engage in life-long
leaming | Ability to adapt to changing technology. | Understanding of the need to continually update one's skills and knowledge. | | | | | | #Totals/ | | 4.00 | 4.50 | 3.48 | | Instrument
Max | Average
4.02 | | 123 | | 3.43 | 4.02 | 3.48 | | Ave | 3.65 | | 6 | | 2.88 | 3.55 | 3.48 | | Min | 3.43 | | | (j) Know contemporary issues | Ability to identify basic
problems and contemporary
issues in engineering. | Application of knowledge of
contemporary issues to
Metallurgical Engineering | | | Instrument | Average | | #Totals/ | | 4.20 | 4.00 | | | Max | 3.50 | | # I Otals/ | | 3.40 | 3.50 | | | Ave | 3.45 | | 56 | | 3.00 | 3.00 | | | Min | 3.40 | | | | | Proficient in operating | Understands the engineering | | | | | 56 | (k) Use engineering
techniques, skills, and tools | Capable of using tools such
as Excel, SolidWorks,
MathCAD | equipment used in the
laboratory program such as
the MTS machine, rolling mill,
hardness tester | design method and can apply
this method in developing
solutions to engineering
problems. | | | | | 56
5 | | as Excel, SolidWorks,
MathCAD | equipment used in the
laboratory program such as
the MTS machine, rolling mill,
hardness tester | design method and can apply
this method in developing
solutions to engineering
problems. | | Instrument
Max | | | 56 | | as Excel, SolidWorks, | equipment used in the
laboratory program such as
the MTS machine, rolling mill, | design method and can apply
this method in developing
solutions to engineering | | Instrument
Max
Ave | Average
3.87
3.54 | Table E-III-4 2013 Assessment Summary | alendar | Year | 2013 | | | | | | |-----------------------|--|--|--|--|---|---------------------------------|-------------------------| | | Description | Performance Objective 1 | Performance Objective 2 | Performance Objective 3 | Performance Objective 4 | | | | | (a) Apply knowledge of math, science, and engineering | Proficient in Fundamental
Concepts and Skills | Proficient in Theoretical and
Practical Relationships | Proficient in Basic Science | | Instrument | Average | | #Totals/
358
14 | | 4.31
3.72
2.71 | 4.50
3.55
2.59 | 4.19
3.24
2.41 | | Max
Ave
Min | 3.72
3.50
3.24 | | | (b) Design and Conduct experiments Analyze and interpret data and information | Conducts the design of
experiments. | Operates equipment and collects data for analysis. | Compares results for
experimental measurements
to the literature and conducts
interpretation of results in
written reports. | Is able to collect global
information and to use this
information in evaluation and
interpretation of laboratory
data | Instrument | | | #Totals/
133
12 | | 3.57
3.04
2.56 | 4.88
4.37
3.67 | 4.29
3.71
3.33 | 4.38
2.90
1.00 | Max
Ave
Min | 4.37
3.51
2.90 | | | (c) Optimally select material
and design materials
treatment and production
processes | Understand the engineering design process | Formulate possible engineering solutions | Master the iterative process ir
engineering design | Recognize and observe
constraints in engineering
design | Instrument | A., | | #Totals/
114
8 | | 4.33
4.03
3.60 | 3.60
3.60
3.60 | 4.21
3.61
3.00 | 4.00
3.60
3.20 | Max
Ave
Min | 4.03
3.71
3.60 | | #Totals/ | (d) Function well on teams | Responsible Participation 4.43 | Interaction Skills 4.29 | Assimilation and
Receptiveness Skills
2.60 | | Instrument
Max | Average
3.74 | | 76
6 | | 3.74
3.00 | 3.24
2.20 | 2.60
2.60 | | Ave
Min | 3.19
2.60 | | | (e) Identify, formulate, and
solve engineering problems | Identify | Formulate | Solve | | Instrument | Average | | #Totals/
156
8 | | 4.56
3.85
2.56 | 4.07
3.24
2.41 | 3.86
3.62
3.44 | | Max
Ave
Min | 3.85
3.57
3.24 | | | (f) Know professional and
ethical responsibilities and
practices | Carries out responsibilities in
a professional and ethical
manner | Understands basic
engineering principles and
practices, in terms of
professional ethics and
behavior | | | Instrument | | | #Totals/
67
6 | | 4.57
3.68
2.80 | 5.00
4.06
2.60 | | | Max
Ave
Min | 4.06
3.87
3.68 | | | (g) Communicate effectively | The content of the written or
oral presentation is effective. | The organization of
memorandum and technical
reports is consistent with
styles accepted by the
person's primary professional
engineering society. | The design of slides shows
an understanding of vision
limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | | _ | | #Totals/
142
13 | | 5.00
3.64
2.80 | 4.33
3.59
2.80 | 4.43
3.48
2.60 | | Instrument
Max
Ave
Min | 3.64
3.57
3.48 | | 13 | (h) Know engineering's global
societal context | | Awareness of contemporary
state of knowledge and
relationship to engineering
solutions | Recognizes the need to be aware of societal issues especially those that can be engaged by engineering | | Will | 3.40 | | #Totals/ | | societal context | 3.86 | solutions 3.00 | | Instrument
Max | Average
4.01 | | 114
8 | | 4.01
3.00 | 3.53
3.20 | 3.00
3.00 | | Ave
Min | 3.51
3.00 | | | (i) Engage in life-long
learning | Ability to adapt to changing
technology. | Understanding of the need to
continually update one's skills
and knowledge. | Cognitive Level Assessment | | Instrument | Avorago | | #Totals/
93
4 | | 4.38
4.19
4.00 | 4.43
4.43
4.43 | 4.26
4.26
4.26 | | Max
Ave
Min | 4.43
4.29
4.19 | | | (j) Know contemporary issues | Ability to identify basic
problems and contemporary
issues in engineering. | Application of knowledge of
contemporary issues to
Metallurgical Engineering | | | Instrument | Average | | #Totals/
65
4 | | 4.47
4.36
4.29 | 4.14
4.14
4.14 | | | Max
Ave
Min | 4.36
4.25
4.14 | | | (k) Use engineering techniques, skills, and tools | Capable of using tools such as Excel, SolidWorks, MathCAD | Proficient in operating equipment used in the laboratory program such as the MTS machine, rolling mill, hardness tester | Understands the engineering design method and can apply this method in developing solutions to engineering problems. | | | | | #Totals/ | | 4.69
3.86 | 4.43
4.05 | 4.43
3.71 | | Instrument
Max
Ave | Average
4.05
3.88 | Table E-III-5 2014 Assessment Summary | 2.04 1.02 2.05 1.02 2.05 | | | | | | | | | |--|-----------------|--|--|---|--|--|------------|----------------------| | 1 | | | | | ı | 1 | | | | Content of engineering Concepts and Sibility Content of Engineering Concepts and Sibility Content of Engineering Engineerin | outcome | | | | | Performance Objective 4 | | | | #Totals | | | | | Proficient in Basic Science | | | | | 236 2.56 2.56 3.56 3.60 3.26 3.56 3.60 3.26 3.57 3.26 3. | | | | | | | | | | 1 1 2 2 2 2 2 2 2 2 | | | | | | | | 3.58 | | #Totals/ Formulation with office and production and or use the international Analyzes and information and or use the international Analyzes and information in evaluation and or use the international Analyzes and information in evaluation and or use the international Analyzes and design desi | 13 | | | 1.62 | | | Min | 2.86 | | #Totals 1-52 | | experiments Analyze and | | Operates equipment and collects data for analysis. | experimental measurements
to the literature and conducts
interpretation of results in | information and to use this
information in evaluation and
interpretation of laboratory | Instrument | Average | | 17 | #Totals/ | | 4.52 | 4.71 | 4.67 | 4.05 | | 4.25 | | Cytimany select natural and design process and engineering solutions and production processes are single process and production processes and production processes and production processes and | | | | | | | | 3.83 | | # and design methods and production of productions and production of productions and production of productions and production of productions and | 17 | (a) On the allowed at a sector of all | | | | | Min | 3.53 | | 99 3.58 3.69 3.69 3.25 3.7 | | and design materials
treatment and production | | | | constraints in engineering | Instrument | Average | | OF Function well on teams Responsible Participation Interaction Skills Response | 99 | | 3.58 | 3.69 | 3.83 | 4.04 | Ave | 4.04
3.79
3.58 | | Totals | | (d) Function well on teams | | | | | | 2.50 | | Footbale | um | | | | Receptiveness Skills | | | | | Totals | | | | | | | | 3.71
3.33 | | #Totals/ Totals/ | | | | | | | | 2.75 | | A | | | Identify | Formulate | Solve | | Instrument | Average | | 13 2,94 2,79 2,67 Min 3,15 | | | | | | | Max | 3.52 | | #Totals/ ##Totals/ #################################### | | | | | | | | 3.29
3.16 | | Communicate effectively The content of the written or oral presentation is effective. The orange of societal content with system accepted by the person's primary professional imports is consistent with system accepted by the person's primary professional with system accepted by the person's primary professional with t | | ethical responsibilities and | a professional and ethical
manner
4.67 | engineering principles and
practices, in terms of
professional ethics and
behavior 4.67 | | | Max | 4.17 | | FTotals/ Gi) Communicate effectively The content of the written or oral presentation is effective. The organization of memorandum and technical integrots is consistent with styless accepted by the preports is consistent with styless accepted by the preports is consistent with styless accepted by the preports processional engineering society. Instrument Average the total time the presentations. form the visual and during oral presentations. Instrument Average the total time the presentations. Instrument Average the total time the presentations. Instrument Average the presentations and the total time the presentations. Instrument Average the total time the presentations. Instrument Average the total presentations and the total time the presentations. Instrument Average the total presentations and the total time the presentations. Instrument Average the total presentations and the total time the presentations. Instrument Average the total presentations and the total time the presentations. Instrument Average the presentations and the total time the presentations. Instrument Average the presentations and the total time the presentations. Instrument Average the presentations and the total time the presentations. Instrument Average the presentations and understanding of vision time the presentations. Instrument Average the presentations. Instrument Average the presentations and understanding of vision time the presentations. Instrument Average the presentations. Instrument Average the presentations. Instrument Average the presentations. Instrument Average the presentations and understanding of vision time the presenta | | | | | | | | 3.85 | | 114 12 | | (g) Communicate effectively | oral presentation is effective. | memorandum and technical
reports is consistent with
styles accepted by the
person's primary professional
engineering society. | an understanding of vision
limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | | | | 12 | | | | | | | | 3.91
3.83 | | Societal context Instrument State of knowledge and relationship to engineering solutions in global and societal context Instrument State of knowledge and relationship to engineering solutions Soluti | | | | | | | | 3.75 | | #Totals/ 73 | | | necessary to understanding
impact of engineering
solutions in global and | state of knowledge and
relationship to engineering | aware of societal issues
especially those that can be
engaged by engineering | | Instrument | Average | | Totals | #Totals/ | | 3.91 | 4.67 | 2.50 | | | Average
3.42 | | (i) Engage in life-long learning | 73
7 | | 3.36 | 3.42 | | | | 3.09 | | #Totals/ 116 | ı | | | continually update one's skills | | | | 2.50 | | 116 | #Totals/ | | 4.22 | 4.33 | 3.22 | | | Average
3.89 | | (i) Know contemporary issues and contemporary issues in engineering. #Totals/ 50 | 116 | | 3.77 | 3.89 | 3.22 | | Ave | 3.63 | | issues problems and contemporary issues to issues in engineering. #Totals/ 50 | 7 | | | | 3.22 | | Min | 3.22 | | #Totals/ | | | problems and contemporary | contemporary issues to | | | Instrument | Average | | 4 Substitution of the children shall be represented by represen | | | | | | | Max | 3.86 | | (k) Use engineering techniques, skills, and tools with the continuous stills, and tools as Excel, SolidWorks, MathCAD with wit | | | | | | | | 3.77
3.67 | | #Totals/ 4.50 4.33 4.33 4.53 Max 4. 5 | · | | Capable of using tools such as Excel, SolidWorks, | Proficient in operating equipment used in the laboratory program such as the MTS machine, rolling mill, | design method and can apply
this method in developing
solutions to engineering | | | | | | #Tar-t-1 | | 4.50 | 4.22 | 4.22 | 4.52 | | | | | #Totals/
140 | | 4.50
4.12 | 4.33
4.04 | 4.33
4.17 | 4.53
4.53 | Max
Ave | 4.53
4.22 | | 12 3.40 3.80 4.00 4.53 Min 4.0 | | | | | | | | 4.04 | Table E-III-6 2015 Assessment Summary | | | ary | | | | | | |---|--|---|--|--|---|---|--| | | Voor | 2015 | | | | | | | alendar
outcome | Description | Performance Objective 1 | Performance Objective 2 | Performance Objective 3 | Performance Objective 4 | | | | dioonic | (a) Apply knowledge of math, | Proficient in Fundamental | Proficient in Theoretical and | Proficient in Basic Science | i chomance objective 4 | | | | | science, and engineering | Concepts and Skills | Practical Relationships | | | | | | #Totals/ | | 4.14 | 3.82 | 3.62 | | Instrument
Max | Average
3.48 | | 324 | | 3.48 | 3.22 | 3.26 | | Ave | 3.32 | | 11 | | 2.74 | 2.69 | 2.74 | | Min | 3.22 | | | (b) Design and Conduct
experiments Analyze and
interpret data and information | Conducts the design of
experiments. | Operates equipment and collects data for analysis. | Compares results for
experimental measurements
to the literature and conducts
interpretation of results in
written reports. | Is able to collect global
information and to use this
information in evaluation and
interpretation of laboratory
data | la strum on t | A | | #Totals/ | | 3.57 | 4.57 | 4.29 | 3.75 | Instrument
Max | 3.77 | | 106 | | 2.84 | 3.77 | 3.51 | 3.23 | Ave | 3.34 | | 11 | | 1.67 | 3.00 | 3.00 | 2.71 | Min | 2.84 | | | (c) Optimally select material
and design materials
treatment and production
processes | Understand the engineering
design process | Formulate possible
engineering solutions | Master the iterative process in
engineering design | Recognize and observe
constraints in engineering
design | Instrument | Average | | #Totals/ | | 4.14 | 3.75 | 4.21 | 4.00 | Max | 4.00 | | 100 | | 3.91 | 3.75 | 3.86 | 4.00 | Ave | 3.88 | | 8 | | 3.75 | 3.75 | 3.50 | 4.00 | Min | 3.75 | | | (d) Function well on teams | Responsible Participation | Interaction Skills | Assimilation and
Receptiveness Skills | | lnotr : : | Avorses | | #Totals/ | | 4.43 | 4.29 | 3.75 | | Instrument
Max | Average
4.14 | | 64
6 | | 4.14
4.00 | 4.02
3.75 | 3.75
3.75 | | Ave
Min | 3.97
3.75 | | U | (a) Identify formulate and | | Formulate | Solve | | IVIII | 3.15 | | | (e) Identify, formulate, and
solve engineering problems | Identify | romuate | SUIVE | | Instrument | Average | | #Totals/ | | 4.43 | 4.07 | 4.03 | | Max | 4.05 | | 155
7 | | 3.31
2.66 | 4.05
4.03 | 3.95
3.86 | | Ave
Min | 3.77
3.31 | | #Totals/ | (f) Know professional and
ethical responsibilities and
practices | Carries out responsibilities in
a professional and ethical
manner | Understands basic engineering principles and practices, in terms of professional ethics and behavior 4.75 | | | Instrument
Max | Average
4.66 | | #10tals/ | | 4.30 | 4.66 | | | Ave | 4.48 | | 5 | | 3.83 | 4.57 | | | Min | 4.30 | | | (g) Communicate effectively | The content of the written or oral presentation is effective. | The organization of
memorandum and technical
reports is consistent with
styles accepted by the
person's primary professional
engineering society. | The design of slides shows
an understanding of vision
limitation of the audience and
the total time the presenter
plans to spend on the visual
aid during oral presentations. | | Instrument | | | #Totals/ | | 5.00 | 4.29 | 4.43 | | Max | 4.19 | | 118
13 | | 4.07
3.29 | 3.73
2.71 | 4.19
3.90 | | Ave
Min | 4.00 | | | | | Awareness of contemporary | Recognizes the need to be | | | | | | (h) Know engineering's global | Has the broad education | | | | | 3.73 | | | (h) Know engineering's global societal context | Has the broad education
necessary to understanding
impact of engineering
solutions in global and
societal context | state of knowledge and relationship to engineering solutions | aware of societal issues
especially those that can be
engaged by engineering
solutions | | Instrument | | | #Totals/ | | necessary to understanding
impact of engineering
solutions in global and
societal context | state of knowledge and relationship to engineering solutions | aware of societal issues
especially those that can be
engaged by engineering
solutions | | Instrument
Max | Average
3.84 | | #Totals/
76
7 | | necessary to understanding
impact of engineering
solutions in global and
societal context | state of knowledge and relationship to engineering solutions 3.86 3.26 | aware of societal issues
especially those that can be
engaged by engineering
solutions | | | Average
3.84
3.37 | | 76 | | necessary to understanding impact of engineering solutions in global and societal context 4.67 | state of knowledge and relationship to engineering solutions | aware of societal issues
especially those that can be
engaged by engineering
solutions 3.00 3.00 | | Max
Ave
Min | Average
3.84
3.37
3.00 | | 76
7 | societal context (i) Engage in life-long | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment | | Max
Ave
Min | Average
3.84
3.37
3.00 | | 76 | societal context (i) Engage in life-long | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills | aware of societal issues especially those that can be engaged by engineering solutions 3.00 3.00 3.00 | | Max
Ave
Min | Average
3.84
3.37
3.00 | | 76
7
#Totals/ | (i) Engage in life-long learning | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.38 4.02 3.83 | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.17 | aware of societal issues especially those that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment | | Max
Ave
Min
Instrument
Max | Average
3.84
3.37
3.00
Average
4.30 | | 76
7
#Totals/
104
6 | societal context (i) Engage in life-long | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.38 4.02 3.83 Ability to identify basic problems and contemporary issues in engineering. | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.107 Application of knowledge of contemporary issues to Metallurgical Engineering | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment 3.83 3.83 | | Max Ave Min Instrument Max Ave Min Instrument | Average 3.84 3.37 3.00 Average 4.30 4.05 3.83 Average | | 76
7
#Totals/
104
6 | (i) Engage in life-long learning | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.38 4.02 3.63 Ability to identify basic problems and contemporary issues in engineering. | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.17 Application of knowledge of contemporary issues to Metallurgical Engineering 4.14 3.99 | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment 3.83 3.83 | | Max Ave Min Instrument Max Ave Min Instrument Max Ave Ave | Average Average 4.30 4.05 3.83 Average 4.15 4.07 | | 76
7
#Totals/
104
6 | (i) Engage in life-long learning (j) Know contemporary issues | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.33 4.02 3.83 Ability to identify basic problems and contemporary issues in engineering. 4.33 4.15 3.83 | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.17 Application of knowledge of contemporary issues to Metallurgical Engineering 4.14 3.99 3.83 | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment 3.83 3.83 3.83 | | Max Ave Min Instrument Max Ave Min Instrument Max Ave Min | Average 3.84 3.37 3.00 Average 4.30 4.05 3.83 Average 4.15 | | 76
7
#Totals/
104
6
#Totals/
64 | (i) Engage in life-long learning | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.38 4.02 3.63 Ability to identify basic problems and contemporary issues in engineering. | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.17 Application of knowledge of contemporary issues to Metallurgical Engineering 4.14 3.99 3.83 Proficient in operating equipment used in the laboratory program such as | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment 3.83 3.83 | | Max Ave Min Instrument Max Ave Min Instrument Max Ave Min | 3.84
3.37
3.00
Average
4.30
3.83
Average
4.15
4.07
3.99 | | 76
7
#Totals/
104
6 | (i) Engage in life-long learning (ii) Know contemporary issues | necessary to understanding impact of engineering solutions in global and societal context 4.67 3.84 3.00 Ability to adapt to changing technology. 4.38 4.02 3.63 Ability to identify basic problems and contemporary issues in engineering. 4.33 4.15 3.83 Capable of using tools such as Excel, SolidWorks, | state of knowledge and relationship to engineering solutions 3.86 3.26 2.75 Understanding of the need to continually update one's skills and knowledge. 4.43 4.30 4.17 Application of knowledge of contemporary issues to Metallurgical Engineering 4.14 3.99 3.83 7.9163 7.9161cent in operating equipment used in the laboratory program such as the MTS machine, rolling mill, the MTS machine, rolling mill, the MTS machine, rolling mill, | aware of societal issues especially hose that can be engaged by engineering solutions 3.00 3.00 3.00 Cognitive Level Assessment 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3. | 4.26 | Max Ave Min Instrument Max Ave Min Instrument Max Ave Ave | Average 3.84 3.37 3.00 Average 4.30 4.05 3.83 Average 4.15 4.07 3.99 |